Exponential Convergence Towards Stationary States for the 1D Porous Medium Equation with Fractional Pressure
نویسندگان
چکیده
We analyse the asymptotic behaviour of solutions to the one dimensional fractional version of the porous medium equation introduced by Caffarelli and Vázquez [13, 14], where the pressure is obtained as a Riesz potential associated to the density. We take advantage of the displacement convexity of the Riesz potential in one dimension to show a functional inequality involving the entropy, entropy dissipation, and the Euclidean transport distance. An argument by approximation shows that this functional inequality is enough to deduce the exponential convergence of solutions in self-similar variables to the unique steady states. AMS Mathematics Subject Classification 2000. 35K55, 35K65, 26A33, 76S05
منابع مشابه
Electro-magneto-hydrodynamics Flows of Burgers' Fluids in Cylindrical Domains with Time Exponential Memory
This paper investigates the axial unsteady flow of a generalized Burgers’ fluid with fractional constitutive equation in a circular micro-tube, in presence of a time-dependent pressure gradient and an electric field parallel to flow direction and a magnetic field perpendicular on the flow direction. The mathematical model used in this work is based on a time-nonlocal constitutive equation for s...
متن کاملAn exponential spline for solving the fractional riccati differential equation
In this Article, proposes an approximation for the solution of the Riccati equation based on the use of exponential spline functions. Then the exponential spline equations are obtained and the differential equation of the fractional Riccati is discretized. The effect of performing this mathematical operation is obtained from an algebraic system of equations. To illustrate the benefits of the me...
متن کاملCoupling of a two phase gas liquid compositional 3D Darcy flow with a 1D compositional free gas flow
A model coupling a three dimensional gas liquid compositional Darcy flow and a one dimensional compositional free gas flow is presented. The coupling conditions at the interface between the gallery and the porous medium account for the molar normal fluxes continuity for each component, the gas liquid thermodynamical equilibrium, the gas pressure continuity and the gas and liquid molar fractions...
متن کاملRefined Long-time Asymptotics for Some Polymeric Fluid Flow Models
We consider a polymeric fluid model, consisting of the incompressible Navier-Stokes equations coupled to a non-symmetric Fokker-Planck equation. First, steady states and exponential convergence to them in relative entropy are proved for the linear Fokker-Planck equation in the Hookean case. The FENE model is also addressed proving the existence of stationary states and the convergence towards t...
متن کاملPorous Medium Flow with Both a Fractional Potential Pressure and Fractional Time Derivative
We study a porous medium equation with right hand side. The operator has nonlocal diffusion effects given by an inverse fractional Laplacian operator. The derivative in time is also fractional of Caputo-type and which takes into account “memory”. The precise model is D t u− div(u(−∆)−σu) = f, 0 < σ < 1/2. We pose the problem over {t ∈ R+, x ∈ Rn} with nonnegative initial data u(0, x) ≥ 0 as wel...
متن کامل